Priced Managed Lane GuideCHAPTER 6. DesignDesign considerations for priced managed lanes will inevitably be driven by the corridors in which they are located. Of the 14 priced managed lane facilities that were operational in May 2012, all but one were built in corridors with pre-existing HOV lanes. As a result, their designs differ significantly as they required the retrofitting of highway corridors with constrained design settings and that included earlier design exceptions that were previously approved for a specific set of operation rules and requirements. A few operational facilities, including the I-10 Managed Lanes in Houston and the I-15 Express Lanes in San Diego, involved reconstruction of the corridor segments where the HOV lanes existed. For these and other projects where new lanes were constructed, the physical design and construction of the lanes is similar to that of any full standard highway improvement, incorporating few trade-offs between lane width, shoulder width, access, and physical separation. Most other projects have involved the retrofit of existing HOV facilities involving significant design exceptions. 6.1.1 How Design of Managed Lanes Differs From General-Purpose LanesAs with general-purpose lanes, the design and construction of managed lanes involves a variety of improvements to widen or otherwise alter the existing roadway, including utility coordination and relocation, the installation of drainage systems, earthwork, paving, the construction of ramps, overpasses and bridges, and adding appropriate signage and striping. In some cases new express lanes have been built within the median by removing shoulders. In others such as IH 10 in Houston and I-15 in San Diego, new right-of-way may be needed. In either case, modifications to some components of the existing roadway are likely. Outside of new lane construction, the conversion of an existing general-purpose or HOV lane to priced managed lane use can be less complicated if the prior design is found to be able to support tolled traffic without safety ramifications. About half the HOV lanes in the United States have been able to apply full design standards commonly found in the AASHTO Green Book and AASHTO’s 2004 Guide for High Occupancy Vehicle Facilities, and this would likely support any mix of traffic. However many projects have been implemented in very tight design settings where lane and shoulder widths may be reduced. A safety analysis may be required to determine what design and/or operational changes may be needed in order to support a changes in traffic volume if involving an HOV lane conversion. For added capacity, such analysis will likely focus on the access locations of this separate roadway system. In order to provide better traffic service levels, support higher traffic volumes and discourage toll violations, managed lanes are typically accompanied by some form of access control, particularly for non-barrier-separated projects that may have been operating on a part-time (i.e., peak period only) basis. However, recent projects in Utah and Minnesota have utilized a more continuous access policy that allows for greater ingress and egress opportunities across greater lengths of the facilities. As shown in Table 6-1, the basic cross-section components of managed lanes are similar to those of general-purpose and HOV lanes. To date all priced managed lanes existing or proposed are configured next to the center median barrier to serve longer distance trips. Some utilize HOV lanes that were implemented by converting median shoulders. The design of priced managed lanes may also require full roadway reconstruction, but often such projects must fit within an existing freeway. Existing roadway constraints may limit the ability to meet standards. In many cases, right-of-way limitations and bridge structures make it impossible to meet all desired design standards. Compromises, often codified as design exceptions, are often required that involve prudently justified deviations from desired practice. Specific design may also depend on local conditions, accepted practice and other issues. Realizing that applying desirable design elements may not always be possible, this guide includes horizontal design attributes that brackets both desirable elements and reduced elements often applied in constrained settings. Such trade-offs have been practiced for more than 40 years on managed lane designs, so there is considerable operational experience associated with many of these elements. Source: AASHTO, Guide for High Occupancy Vehicle (HOV) Facilities, October 2004 The physical configuration and operation of managed lane installations varies greatly and is driven by travel demand and physical constraints. They may involve single or dual (or even greater) directional lanes operated on a concurrent (with the flow of traffic) or reversible-flow (inbound in the AM, outbound in the PM) basis. Concurrent operations typically provide one lane in each direction, regardless of the traffic peaking that may occur, and as such, these lane designs are symmetrically oriented around the median centerline. Reversible operations on freeways require full concrete barrier separation. Cross sections for these different configurations are provided in the figures below. Figures 6-1, 6-2, and 6-3 provide representative cross sections for concurrent-flow and reversible-flow managed lanes. These dimensions are reflected in guidance found in National Cooperative Highway Research Program (NCHRP) 414, HOV Systems Manual and AASHTO HOV Design Guide, and correspond to current practice for many HOV lane treatments nationwide. Desired designs generally reflect those associated with a permanent or new facility, and typically meet all AASHTO and local design standards. Reduced designs reflect an inability to meet desired criteria due to a variety of constraints that have generally been determined to be very difficult or impossible to address. Consideration of reduced designs should be considered on a case-by-case basis based on sound engineering practice and in context with operational objectives and trade-offs. The reduced elements presented in this Guide, while found on some and perhaps many projects nationally, are not intended as a prescribed standard of practice. Figure 6-1 shows cross sections for a single lane reversible priced managed lane facility located in the median of an existing highway, such as projects operating on various freeways in Houston. Figure 6-2 provides similar information for a two-lane, reversible-flow, median facility similar to that found on I-394 in Minneapolis, I-25 in Denver, and the first generation I-15 facility in San Diego (1995-2011). Finally, Figure 6-3 shows typical cross sections for a dual-lane concurrent-flow facility similar to the SR 91 Express Lanes in Orange County, California and I-95 Express Lanes in Miami, Florida. Figure 6-1: Cross Section for a Single Lane Reversible-Flow Priced Managed Lane
Figure 6-2: Cross Section for a Dual-Lane Reversible-Flow Priced Managed Lane
Figure 6-3: Cross Section for a Dual-Lane Concurrent-Flow Priced Managed Lane
Source: AASHTO, Guide for High Occupancy Vehicle (HOV) Facilities, October 2004 6.2 AccessAccess to a managed lane facility, and the extent to which it is controlled, is a fundamental issue in designing and operating managed lanes. Cost, operational, safety, and enforcement trade-offs associated with the different levels of access control must be considered. There are multiple approaches to providing access to managed lanes: continuous, restricted at-grade access, and grade-separated access. Recently there has also been interest in continuous access where motorists could enter or exit priced managed lanes at any point. The use of continuous access for priced lanes has implications on the number of tolling points, ETC installations and enforcement practices. While tolls are often collected downstream of access points, additional access points in intermediate locations are now also common on newer priced managed lane facilities. This follows a 30-year legacy of intermediate access on HOV lanes. 6.2.1 At-grade AccessThere are three commonly used types of restricted at-grade access for managed lanes:
Figure 6-4: Weave Zone Access Treatment, SR-167 Express Lanes, Seattle, WA
Figure 6-5: Managed Lane Slip Ramp Design Alternatives
The type of at-grade access opening that is selected will depend upon the existing and planned roadway geometrics and the amount of traffic expected to use the opening. In all cases, openings should be located and designed in a way that will not produce adverse impacts to the managed lanes and the parallel highway lanes. The locations of at-grade access openings need to be closely coordinated with highway entrance and exit ramps and allow adequate room for motorists to complete weaving movements when moving between the general-purpose and managed lanes and an entrance or exit ramp. For example, as of 2011, Caltrans recommends a buffer/barrier opening of at least 2,000 feet, and a weaving distance of at least 800 feet per lane between the upstream and downstream ramps and the opening. [8] When determining the locations of slip ramps, local topography, lines of sight, and operating characteristics of adjacent lanes need to be taken into consideration. Where heavy weaving between the managed lanes and interchange ramps is expected, grade-separated access may be desirable based on traffic engineering analysis of the demand and roadway geometrics. This may be especially true where multilane managed lane treatments are being considered. Restricted at-grade access to a striped or barrier-separated managed lane is a cost effective approach to providing controlled access to the managed lane facility. At-grade access opening control ingress and egress to and from the managed lane, minimize traffic service impacts in the managed lane, and control weaving movements on the parallel highway. While they limit the need for expensive ramp structures, they may require additional pavement area, and can require modifications to existing bridges and sign structures. Because access is limited to certain locations upstream and downstream of interchange ramps, there is the potential for bottlenecks to form near access points. Figure 6-6: Slip Ramp Access to the I-680 HOT Lane, Alameda County, CA
Figure 6-7: Slip Ramp Access to the I-10 Katy Freeway HOT Lanes in Houston
6.2.2 Near-Continuous AccessSeveral projects have moved forward with less restriction on access, employing more limited areas where traffic cannot weave back and forth between the managed lane and the general-purpose lanes. The first project to apply this access approach was the I-394 MnPASS project in Minneapolis, shown in Figure 6-8 More recent projects include I-35W in Minneapolis and I-15 in Salt Lake City. I-15 is 42 miles long and provides 19 access points. The access points are marked by white skip striping, while the rest of the express lanes are marked with double-solid white lines. The access points range from 3,000 to 9,000 feet long, giving plenty of space for users to enter and exit the lanes regardless of the prevailing operating condition in mixed-flow lanes. Given the number of access points and length of access zones, essentially half of the project length allows continuous access, and the frequency provides one managed access for every interchange ramp on the right side. I-35W has an even greater percentage of near-continuous access lane-miles—with over 70 percent of the facility featuring this design. In both cases, frequent and appropriately located toll zones limit violations, and the violation levels to date have been acceptable without added enforcement. Additionally, near-continuous access designs permit weaves between the managed lanes and general purposes to be more distributed, thereby reducing the effect of conflict at access openings. Finally, the need for signage is reduced, which in turn can be a positive effect upon capital cost requirements. A number of project sponsors are exploring this approach to access control on managed lane conversions in the San Francisco Bay Area, Phoenix, Seattle, and Minneapolis / St. Paul. Figure 6-8: Near Continuous Access on I-35W in Minneapolis
6.2.3 Grade-Separated AccessConventional wisdom in highway engineering holds that the greatest efficiency, safety, and capacity is achieved when conflicting movements are grade separated. Grade-separated access for managed lanes is generally reserved for high volume movements and those serving linkages to transit facilities. Their inclusion can be found in any project design since they greatly reduce weaving and merging movements for vehicles entering or exiting a facility. In addition, the ramps provide acceleration and deceleration areas, which allow high-speed merges and diverges. Grade-separated options include median drop ramps from overpasses or direct freeway-to-arterial or freeway-to-freeway connections. Figure 6-9 illustrates a freeway-to-freeway connection in Miami, FL for the I-95 Express Lanes. Figure 6-10 shows a direct connection ramp from the I-10 HOV lane in downtown Phoenix to the local street grid, while Figure 6-11 shows the direct HOT-HOV connector from the I-110 south of Los Angeles to I-105, which provides the main highway connection between downtown Los Angeles and Los Angeles International Airport (LAX). Layouts for these examples and others can be found in the HOV guides listed later in this section. Many multilane priced managed lane facilities being planned or built in Georgia, Virginia, Florida, and Texas are relying on grade-separated access, in keeping with their high anticipated volumes associated with ingress and egress. Access and egress to and from managed lanes should be located and designed to minimize conflicts with mainline general-purpose traffic. As with other highway facilities, managed lane access and egress, whether it be continuous or restricted or direct-access features, should meet local practice and to the extent possible, reflect guidance provided by AASHTO. A summary of project design elements is provided in Table 6-2. Figure 6-9: I-95 Express Direct Connector Ramp in Miami
Figure 6-10: HOV Direct Connector Ramp to Downtown Phoenix
Figure 6-11: I-110-I-105 HOV Direct Connector Ramp in Los Angeles
Legend:
ETL=Express toll lanes (all vehicles carry transponders)
HOT=High-occupancy/toll lanes (HOVs free with min occupancy but they may be required to carry transponders)
DAR=Direct-access ramp 6.3 Separation TreatmentsThe design of most managed lane projects is dominated by the access and physical separation issues from general-purpose lanes. The managed lane facilities currently in operation typically utilize either painted buffers or concrete barriers or pylons—also known as tubular markers or stanchions—to separate the priced lanes from the general-purpose lanes and designate entry and exit points. The earliest priced managed lane facilities implemented in the United States all featured continues concrete barriers. However, the success of the I-394 MnPass lanes which opened in 2005 and featured eight miles of painted buffers has led to several new projects that do not have solid buffers. For example, the I-35W managed lanes which opened in Minneapolis in 2010 use a near-continuous access policy, with skip striping to designate access, while the I-85 Express lane in Atlanta incorporates a camera-based “virtual barrier system” to discourage weaving. The following sections focus on aspects of managed lane projects that are not likely to arise during the design of general-purpose highway lanes. Discussions of specialized signage and toll plaza requirements are also provided. 6.3.1 Concrete Barrier SeparationPhysical barriers provide more positive access control and are more effective at reducing violations and maintaining premium traffic service; however, they can add significant cost to a project and may not be able to be accommodated within available right-of-way. Physical barriers may also pose safety hazards where intermediate access requires a break in a concrete barrier alignment. High-speed differentials between the general-purpose lanes and managed lanes often exist, and concrete barriers also help maintain a safe operation by preventing potential violators from inadvertently crossing into a non-barrier-separated managed lane and disrupting traffic flows. Continuous concrete barriers, such as Jersey barriers or moveable barrier systems, are a permanent and durable type of barrier and have been used for separation on a number of managed lane facilities around the country (Figure 6-12). Figure 6-12: I-25 Express Denver Concrete Barrier Separation
However, the presence of barriers is likely to increase response time for emergency vehicles accessing the managed lane. Concrete barriers can also complicate snow removal, unless sufficient storage reservoirs are provided in the shoulder. Exposed barrier ends at access points should also be buffered to protect motorists. The installation of concrete barriers usually requires roadway modifications, as adequate shoulders next to each barrier alignment are needed. Based on AASHTO guidance, shows in Table 6 1, a minimum 4-foot shoulder is generally recommended between the managed lane and the barrier, while a 10-foot shoulder is usually preferred between the general-purpose lane and the barrier. [9] This guidance is shown in Figures 6-1, 6-2, and 6-3. Because of their right-of-way requirements, continuous concrete barriers are more costly to build than other separation options. As a result, most newer managed lanes projects do not use concrete barrier separation. However, barrier separation is commonly found on reversible lane projects that require positive separation due to oncoming traffic conditions. Figure 6-13: Mountable Raised Curb Pylon Separation on the I-95 Express
Figure 6-14: Individual Pylon Separation on the SR 91 Express Lanes
6.3.2 Pylon SeparationTubular markers, also called pylons, channelizers, or stanchions, provide another separation option for buffer-separated managed lanes. These markers consist of a series of highly visible, reflective, lightweight plastic tubes that are approximately 3 feet in height, are placed at regular intervals, and cost $60 to $70 each. While they perform a greater psychological function than striping alone, they do not provide the physical protection of a concrete barrier. Their primary advantages are that they require less right-of-way than concrete barriers and are therefore less expensive. However, anecdotal experience from the SR 91 Express Lanes in Orange County and the I-95 Express Lanes in Miami indicate that 30 to 50 percent of the markers may need to be replaced within any given year, thereby increasing ongoing operations and maintenance expenditure as compared to barriers. There are two primary types of tubular marker systems:
Pylons help distinguish the managed lanes and promote easier enforcement, but may not prevent errant buffer crossing and speed differential issues. They also allow emergency and maintenance vehicles to drive over them to take advantage of the higher travel speeds in the managed lane. Based on the experience of HOV and managed lane programs in California, 20-foot spacing between pylons is recommended. [10] At some access transition zones in San Diego, pneumatically controlled or electronically operated pylons that retract into the ground have also been employed, but few such systems are anticipated in the future as they exhibit higher installation and maintenance costs. Mountable curb markers feature a 10- to 12-inch-wide, 4-inch-high curb that supports vertical round or flat markers with reflective sheeting. The markers bounce back into place if they have been hit. The markers do not damage vehicles crossing them, but do make a loud banging noise. The mountable curb markers are designed to enable emergency vehicle access and to stand up under winter conditions. Although mountable curb markers are used by many highway departments to maintain traffic around construction sites, they have not been widely tested in high-speed lane separation situations. Maintenance IssuesThere are maintenance issues associated with all types of pylons. Experience shows that the displacement rate for traditional pylons is roughly 10 percent every 60 to 90 days, which means they have a limited life cycle and little opportunity to be repaired and. Although generally durable, the adhesive-mounted plastic pylons can only be hit a certain number of times before they cease to bounce back up. They can also be hit with such force that the units dislodge from the pavement. The New York Thruway Authority has used pre-drilled holes in the pavement to attach pylons in an effort to prevent pavement damage, but found the loss ratio to be the same as for the glued units. Dislodged plastic pylons also present a possible traffic hazard if they are displaced into the travel lanes and therefore add to traffic and liability risk. Similarly, the mountable curb pylons are often damaged on impact, but their replacement rate is 10 to 15 percent per year, which is less than for adhesive-mounted pylons. For both types, the plastic pylons tend to turn black in color from the tires of vehicles that strike them. The cost of the traditional pylons is approximately $45 (2011 dollars) per unit. Therefore, depending on spacing and frequency of replacement, both the capital and maintenance costs are high for tubular barriers. Moreover, retractable pylons require considerable maintenance to remove debris and provide for their operability. As with other systems they require replacement after a number of hits at a slightly greater cost (due to their design). Snow removal is also an issue in many locations and presents two problems when pylons are used. As the snow is plowed, it is pushed into the adjacent lane because of the lack of a physical barrier. This means that the adjacent lane is not properly cleared. Also, snow removal equipment often damages pylons, either by plowing snow onto the posts or by hitting them. 6.3.3 Buffer Separation with At-Grade AccessThe speed differential created often needs to be mitigated. Many HOV lanes dating from the 1990s have employed a painted buffer typically four feet in width to help promote driver sight distance. Buffers varying from a minimum of 1 to 4 feet (Orange County CA, Atlanta and Miami) to 15+ feet (I-10 Houston) have been implemented on about half the priced managed lanes. Other projects have opted to retain a single or dual solid stripe treatment without a designated buffer. Pavement marking separation is wider than standard and sometimes involves some overlap onto travel lanes on either side if space is limited. Solid stripes are employed to discourage buffer crossing except in designated areas. At-grade access may be provided in the form of a weave zone (Figure 6-4), weave lane (Figure 6-5), or a slip ramp (Figures 6-6 and 6-7). The advantages of buffer treatments are improved sight distance and more visibility to discourage buffer crossing where access is restricted. Disadvantages are the wider pavement section required and potential confusion if priced managed lanes are not operated full time. Example projects include SR 167 in the Seattle area, I-680 in Alameda County, I-10 and I-110 in Los Angeles, I-85 in Atlanta and portions of I-394 and I-35W in Minneapolis. Figure 6-15: Radio-Frequency Identification Reader Antennae
Figure 6-16: Different Windshield-Mounted Electronic Toll Collection Transponders
6.4 Tolling Provisions6.4.1 Electronic Toll Collection SystemsPriced managed lanes rely on ETC systems for the collection and processing of toll payments. ETC keeps traffic flowing and benefits motorists by allowing them to pay tolls without having to stop at a toll booth and make a cash transaction. Most of the existing ETC systems in use today in the United States are based on radio-frequency identification (RFID) technology communicating in the 815 MHz frequency range. While no national interoperability standard has emerged, MAP-21 passed in July 2012 calls for all toll facilities on federal-aid highways to implement technologies and business practices that facilitate the interoperability of ETC systems. To date, the largest interoperable systems include EZ-Pass on the East Coast, Sun Pass in Florida, and FasTrak in California. ETC systems all utilize similar technologies that function generally as follows:
Figure 6-17: Enforcement Cameras on the West Park Expressway in Houston
6.4.2 Violation Enforcement SystemsIn addition to basic ETC components, most toll roads, and some managed lanes, also utilize photo-enforcement systems to increase accuracy and reduce the chance of missed transactions (Figure 6-17). Since RFID systems are susceptible to missed transactions due to a variety of environmental conditions, video enforcement is seen as a way to protect revenue streams and ensure that close to 100 percent of all trips on the toll road result in a paid transaction. While the basic components of a video toll/violation enforcement system are the same, there is no single national standard today for processing violation images, although at least one organization (the Alliance for Toll Interoperability) is now espousing the concept of a central clearinghouse for all North American toll roads. The basic components of a video toll/violation enforcement system are as follows:
When administered proactively, ALPR serves as a primary means of “pay by plate” in which toll invoices are mailed to vehicle owners, thereby eliminating the requirement that a motorist carry a transponder. However, “pay by plate” is a more expensive method of toll collection for administration purposes, and is often accompanied by an administrative surcharge. Additionally, the use of ALPR in managed lanes is still questionable, in that only one facility nationwide has begun to require eligible HOVs to register their license plate, thus making it impossible to ascertain the vehicle’s occupancy status from the license plate image alone. Other strategies to mitigate this limitation are beginning to emerge and include carpool registration, switchable transponders, that allow the driver to declare the number of occupants in the vehicle, among other means. 6.4.3 Requirements for Variable PricingThe use of variable pricing on priced managed lanes requires additional infrastructure and communications abilities. Since pricing is used to maintain a specified operational threshold, the toll system needs to either be based on a schedule that reflects typical peak demand curves, or it needs to be dynamic and receive real-time traffic input to calculate the toll rate. This real-time traffic information is obtained using loop detectors or other devices capable of detecting characteristics such as traffic volume and speed. A tolling algorithm then uses these characteristics to calculate the appropriate toll to charge. The toll can be raised or lowered in response to traffic conditions as appropriate to influence managed lane operations. However, business rules need to advise customers of the prevailing toll rate. This is typically done upstream of entry points using dynamic signing elements in accordance with guidance found in the 2009 MUTCD. The prevailing price a customer sees when making a choice to use the lane should be guaranteed once they enter. For this reason, the tolling system design opens a customer transaction envelope at the first toll point, but does not process the completed trip transaction until the vehicle passes one or more downstream tolling gantries and the transaction is closed. 6.4.4 Typical Toll Zone DesignPriced managed lane toll zones will be equipped with all necessary infrastructure to identify vehicles, process toll transactions, identify and photograph license plates of potential violators, and inform enforcement personnel as to account status through strategically placed beacons. In the typical toll zone configuration, a vertical post with counter-balanced cantilevered horizontal arms will serve as the toll gantry (see Figure 6-18). In this system, a minimum of 18-foot vertical clearance will be provided between the automated vehicle identification antenna, the transponder reader, and rear-plate-facing license plate image camera on the mast arm. A transaction status indicator beacon will be mounted on the column supporting the toll collection gantry, approximately seven feet from the roadway surface. Many toll zones will also have a designated area for adjacent enforcement personnel monitoring. The availability and placement of these observation locations will generally be in the vicinity of the toll reader and beacons. Sufficient lighting will be present to support license plate recognition and image capture, as well as safety for structural illumination. All of the priced managed lane toll zone components need regular access for preventative maintenance and other in-field connectivity. To provide this access, all components should be housed collectively in hardened and protected utility cabinets with sufficient controls to prevent tampering, preserve safety for maintenance personnel, and provide easy access. It is preferable that these cabinets be placed as far as possible from the travelway and beyond the clear zone. The cabinet must have an access door and be located within 200 feet of the gantry post. Sufficient conduits underneath the general-purpose lanes must be installed to the gantries. Figure 6-18: Typical Managed Lane Toll Zone Design
6.5 SignageAccurate, informative signs are essential in explaining operational procedures of managed lane facilities and ensuring safe access and egress from the managed lanes. Managed lane signs should provide motorists with information on the following:
In addition, motorists need to be given adequate time to decide whether or not to use the managed lane facility and then be able to access the facility safely. This requires that the proper information be provided so that motorists are able to make informed, real-time decisions on whether or not to use the facility. Signage for managed lanes should generally adhere to the standards prescribed for special-use facilities in the federal Manual on Uniform Traffic Control Devices (2009 edition) Section 2B-49 and 50. Figure 6-19: Variable Message Sign on the I-95 Express in Miami
6.5.1 Access and Egress SignageGood signage is critical to directing motorists to access and egress locations on barrier-separated facilities. In order to access interchanges, the corresponding buffer opening must be placed several thousand feet upstream of the exit ramp. Drivers need to be directed to the buffer openings providing access to their desired interchange. The sequence of signs for access to managed lanes is provided in the 2009 MUTCD. 6.5.2 Variable Message SignsManaged lane signage systems must also provide motorists with information on toll levels. Good signage is particularly important when variable tolls are involved. These can involve either time-of-day tolls or a dynamic pricing system that changes price according to the level of congestion in the parallel general-purpose lanes and/or the availability of excess capacity on the managed lane(s). When this is the case, variable message signs are the best way to provide motorists with accurate and current information. Variable message signs can also provide motorists with other information, such as general travel conditions, and enforcement policies. [11] When variable or dynamic pricing is used, at least one variable message sign should be placed before all entrance points to the managed lane in order to provide drivers with the basic information they need in order to determine whether or not they will use the facility. In addition, the outermost entrance locations or those spaced more than two miles apart may warrant the placement of two or more variable message signs that display the toll rate information so users have sufficient time to make a decision about whether or not to use the HOT lane. These signs operate in parallel and are usually controlled from an operations or traffic control center. Figure 6-19 shows a variable message sign providing toll rate information to specific destinations on the I-95 Express in Miami. Chapter 2G of the 2009 MUTCD provides comprehensive information on managed lane signage. [12] In particular Figures 2G-21 through 2G-24 in the 2009 MUTCD show examples of the sequence of guide signs for various configurations of initial and intermediate entrances to priced managed lanes. Figure 6-20: Enforcement Area on I-45 in Houston
6.6 Enforcement AreasManaged lane facilities should also include locations from which enforcement officers can monitor traffic and identify unauthorized vehicles. In order to see occupants properly during hours of darkness or inclement weather, lighting is required at observation points. The enforcement areas should be large enough to accommodate the need for enforcement officers to accelerate to the speed limit before entering traffic. The areas should be wide enough to accommodate safety enforcement action and may be located near tolling points, allowing officers to monitor traffic as it enters the facility and provide a visual deterrent to would be offenders (Figure 6-20). Barrier-separated facilities will require less enforcement presence than would be required for a roadway that is not physically separated. The primary reason that facilities for on-site enforcement are recommended near the access points is that current technologies—both video and thermal—cannot accurately discern the number of occupants in large numbers of vehicles traveling at highway speeds. Moreover, the presence of an officer is a useful deterrent for misuse by those who want to abuse the system. Enforcement issues are addressed in further detail in Section 7.3. Footnotes [8] HOV Guidelines for Planning, Design, and Operations, Traffic Operations Policy Directive, California Department of Transportation, April 2011. Back to reference 8. [9] AASHTO, Guide for High Occupancy Vehicle Facilities, 2004. Back to reference 9. [10] High Occupancy Vehicle Facilities: A Planning, Operation, and Design Manual, Parsons Brinckerhoff, 1990. Back to reference 10. [11] HOT lane operators have contemplated displaying anticipated travel times savings together with toll levels in order to help motorists make the decision whether or not to use the HOT lane, but have generally decided against this, given that the actual time savings experienced by motorists could differ. Back to reference 11. [12] https://mutcd.fhwa.dot.gov/htm/2009/part2/part2g.htm Back to reference 12. |
United States Department of Transportation - Federal Highway Administration |